Most people have heard of atomic clocks, their accuracy and precision are well known. An atomic clock has the potential to keep time for several hundred million years and not lose a second in drift. Drift is the process where clocks lose or gain time because of the inaccuracies in the mechanisms that make them work. Mechanical clocks, for instance, have been around for hundreds of years but even the most expensive and well engineered will drift at least a second a day. Whilst electronic clocks are more accurate they also will drift by about a second a week. Atomic clocks have no comparison when it comes to time keeping. Because an atomic clock is based on the oscillation of an atom (in most cases the caesium 133 atom) which has an exact and finite resonance (caesium is 9,192,631,770 every second) this makes them accurate to within a billionth of a second (a nanosecond). While this type of accuracy is unparalleled it has made possible technologies and innovations that have changed the world. Satellite communication is only possible thanks to the time keeping of atomic clocks, so is satellite navigation. As the speed of light (and therefore radio waves) travel at over 300,000km a second an inaccuracy of a second could see a navigation system be hundreds of thousands of miles out. Precise accuracy is also essential in many modern computer applications. Global communication, particularly financial transactions have to be done precisely. In Wall Street or the London stock exchange a second can see the value of stock rise or fall by millions. Online reservation also requires the accuracy and perfect synchronisation only atomic clocks can provide otherwise tickets could be sold more than once and cash machines could end up paying out your wages twice if you found a cash machine with a slow clock. Whilst this may sound desirable to the more dishonest of us, it doesn't take much imagination to understand what problems a lack of accuracy and synchronisation could cause. For this reason an International timescale based on the time told by atomic clocks has been developed. UTC (Coordinated Universal Time) is the same everywhere and can account for the slowing of the Earth's rotation by adding leap seconds to keep UTC inline with GMT (Greenwich Meantime). All computer networks that participate in global communication need to be synchronised to UTC. Because UTC is based on the time told by atomic clocks it is the most precise timescale possible. For a computer network to receive and keep synchronised to UTC it first needs access to an atomic clock. These are expensive and large pieces of equipment and are generally only to be found in large scale physics laboratories. Fortunately the time told by these clocks can still be received by a network time server wither by utilising time and frequency long wave broadcasts transmitted by national physics laboratories or from the GPS (Global Positioning system). NTP (network time protocol) can then distribute this UTC time to the network and use the time signal to keep all devices on the network perfectly synchronised to UTC. Richard N Williams is a technical author and specialist in atomic clocks, telecommunications, NTP and network time synchronisation helping to develop dedicated NTP clocks. Please visit us for more information about a network time server or other ntp server solutions.
Technology Blog provide new Gadget everyday! Blog about latest technology Internet Technology.